

12

Sequential Structure of Objective
Knowledge with an Application to Learning

System

Yamasaki, Susumu; Sasakura, Mariko

Abstract—We deal with knowledge structure
of (operation) sequences, where the operation
may contain information on acquisition of
objective knowledge. A sequence of operations
makes a performance of procedure causing
situation transitions, where the system based on
formation of operation sequences has characters
such that: (1) the operations are regarded as
media for objective knowledge, which may
denote not only objects but also primitive
procedures, (2) the situation is referred to by
name, and (3) the organization of operation
sequences may be automated. We apply such
knowledge structure to implementation of a
learning system such that it is mainly constructed
to take formation of operation sequences for
exercise practice in programming language.

Index Terms—Knowledge structure

1. INTRODUCTION
his paper deals with a model for a method of
how to organize an automated process of

learning. The conceived theory is concerned with
a system for sequential structure of objective
knowledge. As regards the proposed system,
some artificial intelligence frameworks may be
relevant.

(1) There have been some trend in e-
learning systems, regarding adaptive
aspects [9][19] or the tutoring one [22].

(2) The logical analysis standpoint has
contained a wide range of formal
systems since its organization
([11][15][17]).

 Hybrid logic, which involves both
state-dependent and modal
operators, is a formal system
with logical meanings of states
and worlds ([1][2]).

 Relations between the events
are discussed through predicates
in classical and modal logic
([7][13]). The event as the cause-
and-effect relationship is made
clear from the view of complexity
([10]).

Manuscript received June 18, 2008.

Susumu Yamasaki is with Department of Computer Science,
Okayama University, Japan

(e-mail: yamasaki@momo.cs.okayama-u.ac.jp).

(3) Correlation between action and
knowledge has been also studied ([20]).
A mathematical behaviour of action is
also formulated in [18].

(4) The agent technology style is compiled in
[21], where algebraic approach originates
from [12][16].

As current topics, the e-learning methodologies
are closely related to the problem which this
paper deals with. Among the methodologies, the
e-learning systems involve adaptive aspects [8]
so that the exercise may be devoted to
adaptation. From the visualization view of points,
we have an implemented system of adaptive e-
learning ([24]). The concept of adaptation is
regarded as primary for e-learnings as in [4][5][6].
On the other hand, the concept of tutoring for
navigation as in [3] is relevant to methodologies
of self-learning. Observing adaptation and
tutoring methodologies, we pay attention to
mechanization of learning process with reference
to exercise practice.
To learn programming languages, the exercise
practice can be of use. This is because some
compilation of exercise practice to acquire
knowledge may conceive automated process of
learning step by step:

 An exercise is by itself basic, if we
complete it.

 An exercise leads to subsidiary exercises
for recovery learning, if we do not
complete the original exercise.

We can continue to learn by ourselves, trying
exercises and following the way depending on
whether we complete the given exercise, or we
do not complete but take recovery with subsidiary
exercises. If we could observe an automated
process of learning as above mentioned, then it
may be mechanized for the learner's manual.
This is why we organize an automated process of
learning with reference to exercise practice.
We focus on the design problem of a formal
system for exercise practice in programming
language. The formal system contains the
constraints:

T

13

(a) the exercises are organized in advance.
(b) the practices are interactive with respect

to situations.
(c) an interactive effect of practice causes

situation transition and a step to the next
exercise.

We then design a formal system whose
mechanism is analyzed as follows. A sequence

of operations)0(1 nxx n makes a

performance of the form

      132211 ,,,,,,,, nnn xSemxSemxSem  

where  )1(nixSem i  denotes an

implementation of the operation ix , and

11 ,, n  are a corresponding sequence of

situations. The system regarding formation of
operation sequences has characters such that

(i) the operations contain objective
knowledge,

(ii) the situation is referred to by name, and
(iii) the organization of operation sequences

may be automated.
The paper is organized as follows. Section 2 is
concerned with a formal system. In Section 3, we
have a procedure for formation of operation-
sequences. In Section 4, we have an application
of the system to exercise practices in
programming. Section 5 contains concluding
remarks.

2. FORMAL SYSTEM FOR KNOWLEDGE

STRUCTURE
For the formation of operation sequences, we
formulate a formal calculus of illustrating it in
[23][28]. Different from the previous works, the
system of this paper is constructed with top down
rule base so that it is applied to exercise
practices in programming. Compared with the
former version, we have elaborate points for
implementation of a language learning system. If
we need a rule to substitute a sequence of
operations for the operation x , that is, a logic

program: x , or)0(,,1  nyyx n , then

the performance may be
   ,, xSemSem 

     .,,,1 xSemySemySemor n

In this paper, to make the rule of substituting
operations for an operation by top-down design,
we regard it as defined for an operation x such

that x , or  0,,1  nyyx n , and the

performance is a sequence of
     ,,,, 1 nySemySemxSem 

   ., SemxSemor

That is,

The sequential relation of operations is in this
paper determined by rewriting rules, but not by
logic programs with negation (as in
[25][27][29][30]).
The top-down application of operations is
preferable, while the bottom-up application is
adopted in the former version.
A performance is caused by implemented
operation sequences with situation transition
sequences:

      132211 ,,,,,,,, nnn xSemxSemxSem  

.
A rewriting rule is used as a form: x (empty

sequence), or  0,,1  nyyx n for an

operation x to be involved in a sequence of
performance. In this section, the system is
formulated by means of rewriting rules.
This version of the system is a model to
effectively perform a sequence of operations for
learning.

A system is a quadruple  RSemC ,,, ,

where:
(i) C is a set of operations.

(ii)  is a set of situations.

(iii)  CSem : is a semantic

function.
(iv) R is a set of rewriting rules of the form

*CCinA  . Note that

 CxxnxxC nn  ,,,0| 11
*  .

The empty sequence in *C is denoted
by  .

A member of *C is a sequence of operations.

The semantic function Sem is extended. The
original function assigns a situation transition to
each operation. Intuitively speaking, the extended
function Sem assigns a situation transition to
each sequence of operations so that it gives a
meaning of a sequence over objective knowledge
of operation.
Definition 1. The semantic function Sem is

extended to be a function  *:CSem

by:

(1)    Sem .

(2)        SemxSemxSem 

 *, CCx   .

Inference rules for  by means of the

follower relation R :
We define the derivation as the least set
satisfying the closure of following inference rules
(1), (2) and (3), on the assumption that a system

 RSemC ,,, is given. (See [14] for such

formality in signed data.) We denote the

14

derivation of  21;; GmoveR by applying the

inference rules (1)-(3) finitely many times, with

the predicate  21;; GmoveR .

(1)   ;;Rmove

(2)      
 21

3123

;;

;;




xmove

xSemGmoveRGx

R

R 

(3)
   

 2121

242411

;;

;;;;




GGmove

GmoveGmove

R

RR

In other words, the relation

 *CmoveR is defined such that by

 21;; Rmove , we mean that:

Given the sequence  initiated, the situation

transition from 1 to 2 is caused by rewriting

and reducing  to the empty sequence.

3. FORMATION OF OPERATION SEQUENCES
Semantics of a sequence of operations is defined

for the system  RSemC ,,, . The

following lemma suggests a relation of the
application of the Sem function to concatenation

of two sequences  and  with the composition

of Sem functions.
Lemma 1. Assume a system

 RSemC ,,, . Then

       SemSemSem  .

Proof. It is proved by induction on the structure of
the sequence  .

(1) In the case that   ,

   

    

SemSem

SemSem




(2) In the case that x1  for some

Cx ,

   
    
       

    
    








SemSem

SemxSem

hypothesisinductionby

SemSemxSem

SemxSem

xSemSem








1

1

1

1

)(

Now assume a system  RSemC ,,, . We

need a procedure to form a sequence of
operations for the system  . The procedure
contains not only deterministic cases but also
nondeterministic ones to get an existing
sequence. Operation-sequence formation for

 :

 21;; GFormation

 if G
 then

 if 21   then  (empty sequence)

 else

 if 2xGG  such that 2Gx is in R

 then

 if   31  xSem

 then  2321 ;;. GGFormationx

 else

 if 21GGG  such that

  411 ;; GFormation and

  242 ;; GFormation are defined

 then

   242411 ;;;;  GFormationGFormation

By means of the above procedure Formation ,
we can have an operation-sequence formation

for the relation  21;; GmoveR . That is, if we

could have the predicate Rmove on the triplet of

G (a sequence of operations), and two

situations 1 and 2 , we may have some

sequence  to cause the situation transition

from 1 to 2 .

Theorem 1. Assume that  21;; GmoveR for

some 21, . It follows that

  21
*.   SemC .

Proof. Assume that  21;; GmoveR for some

21, . Take the procedure for operation

sequences. By structural induction on the

sequence, we see that if  21;; GFormation

yields  , then   21  Sem .

(1) If G , then 21   so that

   11;;Formation and

  11  Sem .

(2) If 2xGG  for some operation x and

  31  xSem such that

 212 ;; xGmoveR , then we must

assume that some rule 1Gx is in R ,

and  2321 ;; GGmoveR . Assume that

 2321 ;; GGFormation yields 1 ,

and that   231  Sem . By the

procedure,  21;; GFormation

provides 1x . It follows that

15

         2311111   SemxSemSemxSem

(3) If 21GGG  such that relations

 411 ;; GmoveR and

 242 ;; GmoveR , then we must

assume that  2421 ;; GGmoveR .

Assume that  412 ;; GFormation

yields a sequence  and

 242 ;; GFormation yields a

sequence  , respectively such that

  41  Sem and

  24  Sem . It follows that

 21GGFormation provides a

sequence  such that

         2411   SemSemSemSem

by means of Lemma 1. This concludes the proof.
Implementation for Exercise Practice
For a learner to practice exercise, the system is
implemented. The system is regarded as
providing a learning course. That is, automated
process of learning is offered by means of
courses involving exercises in the programming
language ML (as in [26]).

Module Elements
Database Operation table

Exercise table
Course table
(A set of rewriting
rules)

Operation
management

Operation provider
Grade checker
(Generation of
semantic function)
Next operation
decider
(Based on the
inference rule)

Table 1. System Construction.

The system is constructed as shown in Table 1,
where it contains two modules.
Databse which is constructed by means of
MySQL, for data involved in the system.
Operation management (engine) which provides
chart sequences with interaction of learners.
 (1) Database
The system makes use of three tables:
 Operation table

 Exercise table
 Course table
These tables are supposedly given by some
expert in ML programming.

(a) The Operation table involves the
operations which learners use. The
operation contains the explanations and
examples. It is observed by Web-browser
such that it is written in terms of html-file.
The Operation table consists of a relation
between the operation and its html-file.

(b) The Exercise table involves examination
problems for test, by which learners'
grade of understanding is evaluated. The
examination problem is made by some
expert and observable by Web-browser.

(c) The Course table involves courses of
learning languages from operations in
order. They are rule-based.

 (2) Operation management engine
The Operation management is a module to
provide the operation, evaluate the answer of the
learner for the examination problem, and decide
what operation to be next provided. It contains
three parts:
Operation provider which demonstrates the
indicated operation for each course.
Checking the grade of understanding for
learners.
Decision of the next operation which is made for
the course.
For example of an ML learning course, we have
an operation named by “ML_standard_course”
which contains operations named by:

(a) “BasicType”
(b) “Function Definitions”
(c) “Local Environment''
(d) “Exception''
(e) “HigherOrderFunctions''
(f) in the case that we could not be

successful in some interaction regarding
the operation ML_standard_course.

16

Figure 1. Web page for definition.

Even if a routine of the process fails, some
recovery routine is ready until it is successful.
That is, the rewriting system is adopted like the
forms:

x (in a successful case)

nyyx 1 (in a recovery case)

We demonstrate a part for exercise practices of
some subsets of ML. We present a structure of
function definition containing an operation
“FunctionDefinitions'' in Fig. 1. It contains
syntactic explanations in the cases of function
definitions with name and without name. In each
case, a simple and typical example is illustrated.
By the operation, we can refer to the exercise.
Three questions and exercises are set, which are
based on [26], while the system may work in
response to answers for the exercises. The
reaction of the system causes a situation
transition so that the system, by rewriting rules,
provides the next operation(s).

4. CONCLUSION
We present a formal system to obtain a
performance of sequences

      132211 ,,,,,,,, nnn xSemxSemxSem  

where  )1(nixSem i  denotes an

implementation of the operation ix , and

11 ,, n  are a corresponding sequence of

situations. Based on the system, we implement
an e-learning system for the beginner to practice
ML programming exercise. We are now ready to
say that:

(i) The operation sequence is a learning
process in terms of rewriting rules.

(ii) The situation is abstract to be applied to
some constraint on the formation of
operation sequences.

Because the rewriting rule is regarded as a given
method for self-learning, this paper suggests that
this formal system is applicable to an e-learning.
The methodology is not always adaptive, nor a
tutoring. The implemented system offers a
method different from proper adaptive methods
and tutoring systems.
We have some remark on the manner of giving
rewriting rules. For the system to implement
exercise practices, we must design: (a) the
exercise assigned to each operation, (b) the
relation of the operations by means of rewriting
rules, and (c) the situation transition which an
operation causes.
We may assume the integrity constraint on the
situation set, if the situation transition should be
restricted. As far as the integrity constraint on the
set of situations is recursively enumerable, we
can effectively form a sequence of operations for
the specified initial sequence with the situation
transition.

REFERENCES

[1] Areces,C. and Blackburn,P., “Repairing the

interpolation in quantified logic”, Annals of
Pure and Applied Logic, 123, pp. 287-299,
2003.

[2] Brauner,T., “Natural deduction for hybrid
logics”, J. of Logic and Computation, 14, pp.
329--353, 2004.

[3] Brusilovsky,P., Schwarz,E. and Weber,G.,
“ELM-ART: an intelligent tutoring system on
World Wide Web Intelligent Tutoring
Systems”, Lecture Notes in Computer
Science, 1086 (Proceedings of 3rd
International Conference on Intelligent
Tutoring Systems, ITS-96), pp.261--269,
1996.

[4] Brusilovsky,P. and Nijhavan,H., “A framework
for adaptive e-learning based on distributed
re-usable learning activities”, Proceedings of
World Conference on E-learning 2002,
pp.154-161, 2002.

[5] Brusilovsky,P. and Maybury,M.T., “From
adaptive hypermedia to the adaptive web”,
Communications of ACM, 45, 5, pp.31-33,
2002.

[6] Brusilovsky,P., “KnowledgeTree: a distributed
architecture for adaptive E-Learning”,

17

Proceedings of 13th international World Wide
Web conference, pp.104-113, 2004.

[7] Cervesato,I., Chittaro,L. and Montanari,A., “A
general modal framework for the event
calculus and its skeptical and credulous
variants”, Proc. of 12th European Conference
on Artificial Intelligence, pp.12-16, 1996.

[8] Conejo,R., Guzm\'{a}n,E., Mill\'{a}n,E.,
Trella,M., P\'{e}rez-De-La-Cruz,J.L. and
R\'{i}os,A., “ SIETTE: a web-based tool for
adaptive testing”, International Journal of
Artificial Intelligence in Education, 14, pp.29-
61, 2004.

[9] Conlan,O., Wade,V., Bruen,C. and
Gargan,W., “Multi-model, metadata driven
approach to adaptive hypermedia services
for personalized e-learning, Adaptive
Hypermedia and Adaptive Web-Based
Systems”, Second International Conference,
AH 2002, pp.100-111, 2002.

[10] Dean,T. and Boddy,M., “Reasoning about
partially ordered events”, Artificial
Intelligence, 36, pp.375-399, 1988.

[11] Genesereth,M.R. and Nilsson,N.J., “Logical
Foundations of Artificial Intelligence”, Morgan
Kaufmann, 1988.

[12] Hoare,C.A.R., “Communicating Sequential
Processes”, Prentice-Hall, 1985.

[13] Kowalski,R.A., “Database updates in the
event calculus”, J. of Logic Programming, 12,
pp.121-146, 1992.

[14] Kunen,K., “Signed data dependencies in
logic programming”, J. of Logic
Programming, 7, pp. 231-245, 1989.

[15] Lloyd,J.W., “Foundations of Logic
Programming”, 2nd, Extended
Edition,Springer-Verlag, 1993.

[16] Milner,R., “Communication and
Concurrency”, Prentice-Hall, 1989.

[17] Minker,J. (ed.), “Foundations of Deductive
Databases and Logic Programming”, Morgan
Kaufmann Publishers, Inc., 1987.

[18] Mosses,P.M., “Action Semantics”, Cambridge
University, 1992.

[19] Paramythis A. and Loidl-Reisinger S.,
“Adaptive learning environments and e-
learning standards”, Electronic Journal on e-
Learning, 2, 1, pp.181-194, 2004

[20] Reiter,R., “Knowledge in Action”, The MIT
Press, 2001.

[21] Russell,S. and Norvig,P., “Artificial
Intelligence -A Modern Approach-”, Prentice-
Hall, 1995.

[22] Ritter,S., Anderson,J., Cytrynowicz,M. and
Medvedeva,O., “Authoring content in the PAT
algebraic tutor”, Journal of Interactive Media
in Education, 98, 9, pp.1-30, 1998.

[23] Sasakura,M., Iwata,K. and Yamasaki,S., “An
interactive environment for generating
sequential information”, Proc. of 10th
International Conference on Information
Visualization IV06, pp.441-446, London,
2006.

[24] Sasakura,M. and Yamasaki,S., “A framework
for adaptive e-learning systems in higher
education with information visualization”,
Proc. of 11th International Conference on
Information Visualization IV07, pp.819-824,
Zurich, 2007.

[25] Shepherdson,J.C., “Negation in logic
programming”, In Minker,J. (ed.),
Foundations of Deductive Databases and
Logic Programming, pp. 19-88, 1987.

[26] Ullman,J.D., “Element of ML programming”,
Prentice Hall International, Inc., 1994.

[27] Yamasaki,S. and Sasakura,M., “An
automated reasoning for diagnostic
knowledge in a distributed environment”,
Proc. of International Symposium on
Information and Communication
Technologies ISICT03, pp.547-552, Dublin,
2003.

[28] Yamasaki,S. and Sasakura,M., “A calculus
effectively performing event formation with
visualization”, Proc. of ISHPC-VI, LNCS.
4759, pp.287-294, 2008.

[29] Yamasaki,S., “Logic programming with
default, weak and strict negations”, Theory
and Practice of Logic Programming, 6, pp.
737-749, 2006.

[30] You,J.-H. and Yuan,L.Y., “On the
equivalence of semantics for normal logic
programs”, J. Logic Programming, 22, pp.
211-222, 1995.

Susumu Yamasaki received Eng.D. in information science
from Kyoto University in 1980. In 1985/86, he was a visiting
fellow at Dept. of Computer Science, University of Warwick,
U.K. In 1987, he joined Okayama University as a professor.

Mariko Sasakura received Eng.D. in information science
from Kyushu University in 2000. She is an assistant professor
of Okayama University.

